Najnowsze informacje

AI Data Infrastructure: Building the Foundation

Essential data infrastructure for AI success. From data pipelines to vector stores, what you need to build reliable AI systems.

AI Data Infrastructure: Building the Foundation

AI is only as good as the data it can access. Here’s how to build infrastructure that enables AI success.

The Infrastructure Stack

┌─────────────────────────────────────┐
│         AI Applications             │
├─────────────────────────────────────┤
│      Orchestration Layer            │
├──────────┬──────────┬───────────────┤
│ Vector   │ Knowledge│ Feature       │
│ Store    │ Graph    │ Store         │
├──────────┴──────────┴───────────────┤
│        Data Processing              │
├─────────────────────────────────────┤
│        Data Sources                 │
└─────────────────────────────────────┘

Core Components

1. Data Ingestion

Sources to connect:

  • Databases (SQL, NoSQL)
  • APIs and SaaS platforms
  • Documents and files
  • Real-time streams
  • External data providers

Key considerations:

  • Incremental updates
  • Change data capture
  • Schema evolution
  • Error handling

2. Data Processing

Essential capabilities:

CapabilityPurpose
ETL/ELTTransform and load data
CleaningEnsure quality
EnrichmentAdd metadata, context
ChunkingPrepare for embeddings

3. Vector Storage

For semantic search and RAG:

  • Embed documents and data
  • Enable similarity search
  • Support metadata filtering
  • Scale with data volume

Popular options:

  • Pinecone (managed)
  • Weaviate (hybrid search)
  • Qdrant (performance)
  • Chroma (local dev)
  • pgvector (PostgreSQL)

4. Knowledge Graphs

For relationship-rich data:

  • Entity relationships
  • Hierarchies
  • Ontologies
  • Temporal data

5. Feature Stores

For ML applications:

  • Feature computation
  • Feature serving
  • Version control
  • Monitoring

Architecture Patterns

Pattern 1: RAG-First

Best for document-heavy use cases.

Documents → Chunking → Embeddings → Vector Store

User Query → Embedding → Search → Context → LLM → Response

Best for structured + unstructured data.

Structured Data → Relational DB

Unstructured → Vector Store → Combined Search → LLM

User Query →────────────┘

Pattern 3: Multi-Modal

Best for diverse data types.

Text → Text Embeddings ──┐
Images → Image Embeddings ├→ Multi-Modal Store → AI Apps
Audio → Audio Embeddings ─┘

Data Quality for AI

Critical Factors

  1. Accuracy: Correct information
  2. Completeness: No missing critical data
  3. Freshness: Up-to-date content
  4. Consistency: Uniform formats
  5. Relevance: Aligned with use cases

Quality Pipeline

Raw Data → Validation → Cleaning → Enrichment → Quality Store
              ↓            ↓           ↓
          Log Issues  Fix Problems  Add Metadata

Embedding Strategies

Choosing Embedding Models

FactorConsideration
DimensionHigher = more nuance, more cost
SpeedBalance accuracy vs. latency
DomainGeneral vs. specialized
CostPer-token pricing

Chunk Size Guidelines

  • Small (256 tokens): Precise retrieval, more noise
  • Medium (512 tokens): Balanced approach
  • Large (1024+ tokens): More context, less precise

Metadata Strategy

Include with embeddings:

  • Source document
  • Creation date
  • Author/owner
  • Category/type
  • Access permissions

Scaling Considerations

Data Volume

ScaleApproach
< 100K docsSingle vector store
100K - 1MSharded vector store
> 1MDistributed architecture

Query Volume

  • Caching for frequent queries
  • Read replicas for scale
  • Async processing for batch
  • Rate limiting for protection

Cost Management

  • Tiered storage (hot/cold)
  • Compression where possible
  • Embedding model optimization
  • Query result caching

Security Architecture

Access Control

  • Document-level permissions
  • User/role-based access
  • Query result filtering
  • Audit logging

Data Protection

  • Encryption at rest
  • Encryption in transit
  • Key management
  • Backup/recovery

Monitoring and Observability

Key Metrics

  • Ingestion success rate
  • Data freshness
  • Query latency
  • Retrieval quality
  • Storage utilization

Alerting

  • Pipeline failures
  • Quality degradation
  • Performance issues
  • Security events

Implementation Roadmap

Phase 1: Foundation

  • Connect primary data sources
  • Set up basic vector store
  • Implement simple RAG
  • Establish monitoring

Phase 2: Enhancement

  • Add more data sources
  • Improve chunking/embedding
  • Implement hybrid search
  • Add metadata enrichment

Phase 3: Scale

  • Distributed architecture
  • Advanced caching
  • Performance optimization
  • Multi-tenant support

Need help building your AI data infrastructure? Let’s architect your solution.

KodKodKod AI

Online

Cześć! 👋 Jestem asystentem AI KodKodKod. Jak mogę Ci pomóc?