Últimas Novidades

AI Model Selection Guide: Choosing the Right LLM

How to choose between Claude, GPT, Gemini, and other AI models. Decision framework based on use case, cost, and requirements.

AI Model Selection Guide: Choosing the Right LLM

With multiple capable LLMs available, choosing the right one for your use case is crucial. Here’s a practical framework.

The Major Players (2026)

Claude (Anthropic)

ModelBest For
Opus 4.5Complex reasoning, coding, agents
Sonnet 4Balanced performance and cost
Haiku 4Fast, simple tasks

GPT (OpenAI)

ModelBest For
GPT-5.2 ProHighest quality, critical tasks
GPT-5.2 ThinkingComplex analysis
GPT-5.2 InstantFast, everyday tasks
GPT-5.2 CodexSoftware development

Gemini (Google)

ModelBest For
Gemini UltraComplex, multi-modal
Gemini ProGeneral purpose
Gemini FlashSpeed-critical

Decision Framework

Step 1: Define Requirements

Task Complexity

  • Simple (classification, extraction) → Smaller models
  • Complex (reasoning, creativity) → Larger models

Speed Requirements

  • Real-time → Fast models (Haiku, Instant, Flash)
  • Batch → Accuracy over speed

Cost Sensitivity

  • High volume, low margin → Smaller models
  • Low volume, high value → Best available

Special Needs

  • Coding → Codex, Opus 4.5
  • Multi-modal → Gemini, GPT-5.2
  • Long context → Check context windows

Step 2: Match to Use Case

Use CaseRecommended
Code generationClaude Opus 4.5, GPT-5.2 Codex
Complex analysisClaude Opus 4.5, GPT-5.2 Pro
Customer supportClaude Sonnet 4, GPT-5.2 Instant
Content creationClaude Sonnet 4, GPT-5.2 Thinking
Data extractionClaude Haiku 4, GPT-5.2 Instant
Multi-modalGemini Ultra, GPT-5.2
Real-time chatClaude Haiku 4, Gemini Flash

Step 3: Evaluate Trade-offs

Performance

    │ Opus 4.5 ★ GPT-5.2 Pro
    │     ★ Sonnet 4 ★ GPT-5.2 Thinking
    │         ★ Haiku 4 ★ GPT-5.2 Instant

    └──────────────────────────→ Cost

Practical Comparison

Coding Tasks

AspectClaude Opus 4.5GPT-5.2 Codex
AccuracyExcellentExcellent
ContextVery longLong
AgentsBest-in-classVery good
CostHigherHigher

Recommendation: Claude for agents and complex projects, Codex for large-scale refactoring.

Document Analysis

AspectClaudeGPT-5.2
Long docsExcellentVery good
AccuracyHighHigh
CitationsGoodGood

Recommendation: Either works well; test with your documents.

Customer Interactions

AspectClaude SonnetGPT-5.2 Instant
SpeedFastVery fast
NaturalExcellentVery good
CostModerateModerate

Recommendation: Test both; preference often subjective.

Multi-Model Strategy

Why Use Multiple Models?

  1. Cost optimization: Use cheaper models for simple tasks
  2. Best-of-breed: Match model strengths to tasks
  3. Redundancy: Fallback if one fails
  4. Comparison: A/B test for quality

Implementation Pattern

Request → Router → [ Model Selection Logic ] → Best Model

                   [ Classification ]

         Simple → Fast model (Haiku, Instant)
         Complex → Capable model (Opus, Pro)
         Coding → Specialized (Codex, Opus)

Routing Criteria

  • Task type
  • Content length
  • Required speed
  • Quality threshold
  • Cost budget

Enterprise Considerations

Data Privacy

ProviderData TrainingEnterprise Options
AnthropicOpt-out availableEnterprise tier
OpenAIOpt-out availableEnterprise tier
GoogleConfigurableVertex AI

Compliance

  • SOC 2 certification
  • GDPR compliance
  • HIPAA options
  • Data residency

Support

  • SLA guarantees
  • Technical support
  • Account management
  • Custom solutions

Cost Optimization

Strategies

  1. Right-size models: Don’t use Opus for simple tasks
  2. Caching: Store common responses
  3. Prompt optimization: Fewer tokens = lower cost
  4. Batch processing: Volume discounts

Cost Comparison (Approximate)

ModelInput (per 1M tokens)Output (per 1M tokens)
Haiku 4$0.25$1.25
Sonnet 4$3$15
Opus 4.5$15$75
GPT-5.2 Instant~$0.30~$1.20
GPT-5.2 Pro~$20~$80

Prices are approximate and may vary

Testing Framework

Before Committing

  1. Benchmark: Test with representative tasks
  2. Quality: Evaluate output accuracy
  3. Speed: Measure latency
  4. Cost: Calculate total cost of ownership
  5. Integration: Test API reliability

Ongoing Evaluation

  • Track performance metrics
  • Monitor costs
  • Re-evaluate as models update
  • Test new options periodically

Future-Proofing

Abstraction Layers

Build applications that can switch models:

  • Standard interface across providers
  • Configuration-driven model selection
  • Easy A/B testing capability

Stay Informed

  • Model release announcements
  • Capability improvements
  • Pricing changes
  • New providers

Need help selecting the right AI models for your use case? Let’s evaluate your options.

KodKodKod AI

Online

Olá! 👋 Sou o assistente IA da KodKodKod. Como posso ajudar?